برنامه ریزی، سازماندهی، بسیج منابع و امکانات، هدایت و کنترل پنج اصل اساسی مدیریت است. مدیران باید برای همه ی این اصول از مهارت کافی برخوردار باشند.

نانوتکنولوژی و کاربرد آن در ايمني و بهداشت

امتیاز کاربران

ستاره غیر فعالستاره غیر فعالستاره غیر فعالستاره غیر فعالستاره غیر فعال
 

مقاله تخصصی

 نانوتکنولوژی و کاربرد آن در ايمني  و بهداشت

Nanotechnology

نانو ذرات از طیف وسیعی از مواد ساخته می شوند

 

 

نانوتکنولوژی به دلیل خصوصیات منحصر به فردي مانند سایز خیلی کوچک آن و نسبت سطح به جرم زیادش به طور بالقوه ای انسانها را در معرض خطرات جدید و رو به رشد قرار می دهد و افزایش مشکلات بهداشتی به خصوص برای کارگران دارد. (نانوتكنولوژي) توليد كارآمد مواد و دستگاهها و سيستمها با كنترل ماده در مقياس طولي نانومتر، و بهره برداري از خواص و پديده هاي نوظهوري است كه در مقياس نانو توسعه يافته اند.
گام اخیر در نانوتکنولوژی توسعه دادن وسایلی است که محققان ایمنی و بهداشت شغلی و قانونگذاران تاکنون در محیط های صنعتی اخیراً از آن غافل بوده اند .
تحقیقات اولیه در مورد اثرات بهداشتی فناوري نانو نشان می دهد که قابلیت ایجاد التهاب ، سرطان ها و و بیماری های شدید ریه را دارد. مقایسات بین نانوتکنولوژی و آزبستوز انجام شده که به طور ویژه ای به بالقوه بودنشان برای دورهای تاخیری طولانی مدت توجه شده است .
به هرحال روش دقیقی که نانوتکنولوژی اثرات بیولوژیکی خود را روی انسان دارد به طور وسیعی ناشناخته است .
قبل از آنکه نیاز به توسعه و ارتقاء استاند ارد ها  راهنماها و مقررات مورد ملاحظه قرار گیرد نیاز قابل ملاحظه ای به تحقیق بیشتر در زمینه ی تداخلات ایمنی و بهداشتی این تکنولوژی وجود دارد.
سرمایه گذاری جهانی در زمینه ی تحقیقات نانوتکنولوژی و توسعه ی آن به طور فوق العاده ای افزایش یافته است. سرمایه گذاری اخیر در زمینه ی ارتقاء این صنایع به طور قابل ملاحظه ای مهم تر از هزینه کردن در مورد تحقیق در این زمینه یا خطرات بالقوه ی آن برای انسان هاست .
مثالهای زیادی در مورد نانوتکنولوژی هایی که تاکنون به طور تجاری در دسترس بودند وجود دارد که شامل مواد آرایشی، البسه، مصالح ساختمانی، افزودنی های  غذایی، لوازم الکترونیکی و لوازم خانگی می باشند .
قابلیت نانوتکنولوژی به عنوان یک مشکل عمومی روز همانند مواد غذایی تغییر شکل یافته ی ژنتیکی، آزبستوز و تحقیق در زمینه ی سلول های بنیادی در حال افزایش می باشد .

نانوذرات:

طبق تعریف جوامع علمی مر تبط با نانو تكنولوژي ،یک نانوذره به ذره ای گفته می شود که ابعادی بین یک تا 100 نانومتر داشته باشد. نانو ذرات از طیف وسیعی از مواد ساخته می شوند. نانو ذرات دوده از سال 1900 در لاستیک ها استفاده می شده است تا آنها را سیاه رنگ جلوه دهد. خرده ذرات نانویی طلا ونقره سالها پیش در قرن دهم به پیگمنت هایی رنگی در شیشه های رنگی افزوده شده است. رنگ به ابعاد این ذرات بستگی دارد. نقره سالهای متمادی به عنوان التیام دهنده استفاده می شده است. شیر از میلیونها ذره با ابعاد نانویی کازئین تشکیل شده است. مولکول های شکر یک نانومتر قطر دارند. متداول ترین وپرکاربردترین آنها نانوذرات سرامیکی هستند. با توجه به تعریف نانوذرات ممکن است این ذهنیت بوجود بیاید که این ذرات با چنین ابعادی در هوا معلق خواهند ماند اما در واقع چنین نیست ونیروهای الکترواستاتیکی بین این ذرات، آنها را درکنار هم قرار می دهد.

خواص نانو ذرات:

با توجه به تعریف نانوذرات، یکی از سوال های مهم در تولید مواد نانو این است که آرایش هندسی وپایداری اتم ها با تغییر اندازه ذرات چه تغییری می کند؟
در تكنولوژي نانو اولین اثر کاهش اندازه ذرات، افزایش سطح است.افزایش نسبت سطح به حجم نانوذرات باعث می شود که اتم های واقع در سطح، اثر بسیار بیشتری نسبت به اتم های درون حجم ذرات، بر خواص فیزیکی ذرات داشته باشند.این ویژگی واکنش پذیری نانوذرات را به شدت افزایش می دهد علاوه براین افزایش سطح ذرات فشار سطحی را تغییر داده ومنجربه تغییر فاصله بین ذرات یا فاصله بین اتم های ذرات می شود

خواص الکترونیکی وشیمیایی :

در نانو تكنولوژي تغییر در فاصله بین اتم های ذرات و هندسه ذرات روی خواص الکترونیکی ماده هم تاثیر گذار است وقتی اندازه ذرات کاهش می  یابد پیوند های الکتریکی در فلزات ظریف تر می شوند جالب است که بپرسیم در چه اندازه دانه ای یک ذره فلزی شبیه یک توده فلز رفتار می کند؟ آیا این تغییر در خواص به تدریج رخ می دهد یا به طور ناگهانی ؟ پاسخ به این سوالات هم ازنظر آزمایشگاهی وهم تئوری مشکل است.
کمیت الکترونیکی که راحت تر دردسترس می باشد پتانسیل یونیزاسیون است مطالعات نشان داده اند که پتانسیل یونیزاسیون در اندازه دانه های کوچک (ذرات ریزتر) بیشتر است یعنی با افزایش اندازه ذرات پتانسیل یونیزاسیون آنها کاهش می یابد افزایش نسبت سطح به حجم وتغیرات در هندسه وساختار الکترونیکی تاثیر شدیدی روی فعل وانفعالات شیمیایی ماده می گذارد و برای مثال فعالیت ذرات کوچک با تغییر در تعداد اتم ها(ودرنتیجه اندازه ذرات) تغییر می کند .

خواص سطحی
در فن آوري نانو خواص دیگری مثل نسبت سطح به حجم و انرژی پتانسیل در مقیاس نانو به طور چشمگیری افزایش می یابند که در قابلیت های محصولات تاثیر بسزایی دارد.

ویسکوزیته در مقیاس نانو
آب در مقیاس نانو آب روانی نیست که ما در مقیاس های بزرگ استفاده می کنیم. اشیاء کوچک درآب با ماده چسبنده ای مثل عسل یا آب قند احاطه شده اند. خواص سیالات در مقیاس نانو در ویسگوزیته برجسته می گردد حجم سیالی که مسیر مشخص را در زمان تعیین شده طی می کند درست مثل ویسمزیته تغییر می کند اگر این سرعت را با v نشان دهیم اندازه حرکت (حاصل ضرب جرم در سرعت ) را با p نمایش دهیم  و A هم مساحت سطح باشد.µ  ویسکزیته مایع  است هرچه عدد رینولد کوچکتر باشد تاثیر ویسکوزیته بیشتر است بنابراین یک باکنری که یک میلیون بارکوچکتر از یک انسان است باکتری آب را یک میلیون بار از ما ویسکوزتر می بابد[4].

dt/dt ≈ qa2v2= اینرسی نیرو

      F= µav نیروی ویسکوزی

Re= qav/µ=Force/F          عددرینولد

خواص مغناطیسی
در نانو تكنولوژي پیچیده ترین تاثیر اندازه ذرات تاثیر بر خواص مغناطیسی ماده است. یک ماده توده ای فرومغناطیس با حوزه های مغناطیسی که هر کدام حاوی هزاران اتم هستند، شناخته می شود. در یک حوزه مغناطیسی جهت چرخش الکترون ها یکسان است، اما حوزه های مغناطیسی متفاوت، جهات چرخش متفاوتی دارند. تغییر فاز مغناطیسی وقتی رخ می دهد که یک میدان مغناطیسی  بزرگ، تمام حوزه های مغناطیسی را یک جهت کند. به عنوان مثال در مورد نانو ذرات ، حوزه های مغناطیسی مشخصی دیده نمی شود. بنابراین تصور می شود که در این موادسیستم های ساده تری وجود خواهد داشت اما در حقیقت چیزی برعکس این موضوع وجود دارد.ذرات مغناطیسی کوچک و حتی جامدات غیر مغناطیسی با اندازه دانه کوچک ، نوع جدیدی از خواص مغناطیسی را نشان می دهند. این خواص متاثر از خاصیت کوانتومی اندازه ذرات است که برای فهمیدن آن، نیاز به مطالعه بسیار است.اندازه ذرات مورد بحث ما، معمولاً کمتر از اندازه حوزه های مغناطیسی در جامدات است بنابراین یک ذره مثل یک اتم مجزا رفتار می کند که گشتاور مغناطیسی بزرگی دارد.

روش های تولید نانو ذرات:
به طور کلی واکنش های شیمیایی برای تولید مواد می تواند در هریک از حالت های جامد، مایع وگاز صورت گیرد. روش متداول برای تولید مواد در جامد آن است که با خردکردن ذرات ، سطح تماس آنها افزایش یافته ودر ادامه جهت افزایش میزان نفوذ اتم ها ویون ها ، این مخلوط در دماهای بالا بیشتر می شود.
در شیمی اصطلاحاً به موادی که واکنش های شیمیایی با آنها آغاز می شود،واکنشگر و موادی که در طی انجام واکنش واکنشگربه آنها تبدیل می شود ،محصول گویند.واکنشگر ها می تواند جامد،مایع یا گاز باشد.به علاوه واکنشگرها یا خود یک عنصر مستقل هستند یا می توانند به صورت ترکیبات چند جزئی باشند. ترکیبات چند جزیی را معمولاً پیش ساز گویند.
روش های بسیاری برای تولید نانو ذرات یا ذرات نانو ساختار توسعه یافته اند که شامل فرایند های حالت بخار، مایع و جامد است.

کاربرد های نانوذرات:

مصارف روزمره

همانطور که در مطالب پيشين مربوط به (نانو تكنولوژي) بيان شد یکی از خواص مهم نانوذرات نسبت سطح به حجم بالای این مواد است. با استفاده ازاین خاصیت می توان کاتالیزورهای قدرتمندی را در ابعاد نانومتری تولید نمود.این نانوکاتالیزورها راندمان واکنش های شیمیایی را به شدت افزایش داده و همچنین به میزان چشمگیری از تولید مواد زاید در واکنش ها جلوگیری خواهند نمود. به کارگیری نانوذرات در تولید مواد دیگر می تواند استحکام آنها را افزایش دهد ویا وزن آنها را کم کندومقاومت شیمیایی وحرارتی آنها را بالا ببرد وواکنش انها را در برابر نور وتشعشعات دیگر تغییر دهد.پس اولین کابردی که برای نانو ذرات می توان متصور شد، استفاده از این مواد در تولید نانوکامپوزیت ها ست. با استفاده از نانو ذرات، نسبت استحکام به وزن مواد کامپوزیتی به شدت افزایش خواهد یافت.اخیراًدر ساخت شیشه های ضدآفتاب از نانوذرات اکسید روی استفاده شده است استفاده از این ماده علاوه بر افزایش کارایی این نوع شیشه ها عمر آنها را نیز چندین برابر نموده است از نانو ذرات همچنین در ساخت انواع ساینده ها، رنگها، لایه های محافظتی جدید وبسیار مقاوم برای شیشه ها وعینک ها(ضدجوش ونشکن) کاشی ها ودر ضد نوشته برای دیوار ها وپوشش های سرامیکی برای افزایش استجکام سلول های خورشیدی نیز با استفاده از نانوذرات تولید شده اند.قبلاً بحث شد که با کوچک شدن ذرات خواص کلی آنها تغییر می کند.

وقتی اندازه ذرات به نانومتر می رسد یکی از خواصی که تحت تاثیر این کوچک شدن اندازه قرار می گیرد تاثیر پذیری از نور وامواج الکترومغناطیسی است با توجه به این موضوع اخیراً چسب هایی از نانو ذرات تولید شده اند که کاربرد های مهمی در اپتوالکتریک وصنایع الکترونیکی دارند ورود نانو ذرات به رنگها یا مواد ساختمانی وزن را کاهش می دهند ودر استفاده از رنگ در هواپیما مصرف سوخت را کاهش می دهد.نانو ذرات نانویی محیط را پاک تر نگه می دارند استفاده از ابزاری که می تواند وضعیت قلب را نشان دهد نانوذرات اکسید تیتانیوم (بی رنگ ) می تواند در کرم های ضد اشعه UV بکار رود.ذراتی مشابه در شیشه آب را دفع می کند و نور خورشید را به کار می برد تا آلودگی را ازبین برد(شیشه های تمیز کننده) در حال حاضر شرکت های زیادی نانو ذرات را به شکل پودر، اسپری وپوشش تولید می کنند که کاربرد های زیادی در قسمت های مختلف اتومومبیل ، راکت های تنیس، عینک های آفتابی ضدخش، پارچه های ضد لک، پنجره های خود تمیز کن وصفحات خورشیدی دارند.

ایمنی و بهداشت

اثرات سمیت و بیولوژیکی:
اطلاعات کمی در مورد اثرات سم شناسی و بیولوژیکی نانوتکنولوژی مخصوصاً شک و شبهاتی در رابطه با راههای بالقوه ی تماس و جابجایی مواد نانو در دفعه ی اول ورود آنها به بدن و پاسخ بدن به مواد نانو وجود دارد. انواع بسیار مختلف ذرات نانو و خصوصیات مختلفشان دسترسی کلی به اثرات سم شناسی آنها را در این مرحله غیر ممکن ساخته است.
مشخص نیست که چگونه خصوصیات مختلف ذرات مثل سطح ناحیه ای، حلالیت، شکل وسطح شیمیایی سمیت ذرات را تحت الشعاع قرار می دهند.
به هر حال یافته های بسیار رایجی هستند که نشان می دهند سایز ذره،سطح ناحیه ای و سطح شیمیایی به عنوان فاکتورهای کلیدی در ایجاد اثرات بهداشتی  سوء می باشند.
به دلیل سایز کوچک استثنایی که ذرات نانو دارند قادرند مکانیسم های دفاعی بدن را مسدود کرده و تشکیل ذراتی با سایز بزرگتر بدهد ذرات نانو در مقایسه با ذرات بزرگتر نسبت سطح به جرم بسیار بزرگتری دارند که ممکن است ذرات را قادر به نفوذ به درون سلولهای بدن و تشکیل  ساختارهایی متفاوت ودر مقیاسی بزرگتر  از آنها بدهد. تماس با ترکیبات نانو به احتمال زیاد از طریق استنشاق انجام  می شود اما ممکن است از طریق پوست یا گوارش نیز انجام شود.
مطالعات زیادی نشان داده است که ذرات نانو قادرند از ریه ها به داخل جریان خون عبورکرده و در سایر ارگانهای بدن انتشار یابند مطالعات روی چندین نوع از حیوانات حاکی از آن است که تماس با ترکیبات نانو ممکن است باعث تغیرات پاتولوژیکی ریه از جمله سر طانها، التهاب، فیبروز و مشکلات تنفسی شود.        
زمانی که مطالعات روی جوندگان یا کشت سلولی اثرات بهداشتی ناشی از استفاده و یا تماس با ذرات نانو را نشان دهد، که مستقیماً قادر نیستیم این تستها را با خطر تماس شغلی یا به انسان ارتباط بدهیم.
تحقیق بیشتری برای اثرات  مزمن  بهداشتی ناشی از ذرات نانو لازم شده است .تماس با سطوح پایین برای به دست آوردن اطلاعاتی برای پروسه ی ارزیابی ریسک مفیدترند.

خطر انفجار:
علاوه بر کنترل تماس ذرات نانو با گارگران در محیط کار، خطر دیگری که مورد توجه است  خطر ناشی از حریق یا انفجار به دلیل فعالیت کاتالیستی  بسیاری از مواد نانو می باشد.
تا کنون کنترل خطرات انفجار یا حریق ثبت نشده است. بعنوان یک پیش احتیاط کنترلهایی را باید در محیط کار به کاربرد که مشابه آن برای مواد مشابه در سطح ماکرو استفاده خواهد شد.

تماس شغلی :
این موضوع حائز اهمیت است که بدانیم و قادر به ارزیابی تماس به منظور ارزیابی اینکه آیا مواد نانو به عنوان یک خطر ایمنی و بهداشت شغلی مطرح هستند.
فعالیت هایی که مواد نانو را در فاز گازی تولید می کنند یا استفاده یا تولید مواد نانو نانو به فرم پودرها یا محلولها را دارند در معرض بزرگترین خطر تماس شغلی با ذرات نانو می باشند.
اگرچه تولید ذرات نانو به طور خاصی در سیستم های بسته انجام می شود، باز خطر تماس به آنها به انواع کنترل های موجود در محل بستگی دارد. بسیاری از روشهای محیط کار که ممکن است منجربه تماس با نانو ها شوند شامل کار با مواد نانو به صورت مایع بدون حفاظت کافی و نظافت سیستمهای جمع آوری گردوغبارهایی که برای گیرانداختن ذرات نانو استفاده می شود. افرادی که به تجارت مواد نانو مشغولند و فعالیت های کاری که ریسک بالایی از تماس با ذرات نانو دارند شامل حمل ونقل، نظافت، نگهداری روتین وسایل، مرتب کردن، ذخیره داخل مخازن وتوزیع کننده ها، به علاوه استفاده توسط مصرف کنندگان نهایی برای اهداف صنعتی.

نتیجه گیری:

تحقیق اولیه در مورد مفاهیم و معانی ایمنی و بهداشت شغلی نانوتکنولوژی نشان می دهد که این تکنولوژی نیازمند توجه و تحقیق بیشتری می باشد بویژه وجود نانوذرات در آلاینده های هوای محیط کار که می تواند سلامتی کارگران را تحت اشعاع قرار دهد.

 *منبع: http://www.nanotechnology.blogfa.com

 

Nanotechnology

 

  1. Introduction

Despite unprecedented government funding and public interest in nanotechnology, few can accurately define the scope, range or potential applications of this technology. One of the most pressing issues facing nanoscientists and technologists today is that of communicating with the non-scientific community. As a result of decades of speculation, a number of myths have grown up around the field, making it difficult for the general public, or indeed the business and financial communities, to understand what is a fundamental shift in the way we look at our interactions with the natural world. This article attempts to address some of these misconceptions, and explain why scientists, businesses and governments are spending large amounts of time and money on nanoscale research and development.

  1. What is nanotechnology?

Take a random selection of scientists, engineers, investors and the general public and ask them what nanotechnology is and you will receive a range of replies as broad as nanotechnology itself. For many scientists, it is nothing startlingly new; after all we have been working at the nanoscale for decades, through electron microscopy, scanning probe microscopies or simply growing and analysing thin films. For most other groups, however, nanotechnology means something far more ambitious, miniature submarines in the bloodstream, little cogs and gears made out of atoms, space elevators made of nanotubes, and the colonization of space. It is no wonder people often muddle up nanotechnology with science fiction.

  1. What is the nanoscale?

Although a metre is defined by the International Standards Organization as `the length of the path travelled by light in vacuum during a time interval of 1/299 792 458 of a second' and a nanometre is by definition 10- 9 of a metre, this does not help scientists to communicate the nanoscale to non-scientists. It is in human nature to relate sizes by reference to everyday objects, and the commonest definition of nanotechnology is in relation to the width of a human hair.

Unfortunately, human hairs are highly variable, ranging from tens to hundreds of microns in diameter (10-6 of a metre), depending on the colour, type and the part of the body from which they are taken, so what is needed is a standard to which we can relate the nanoscale. Rather than asking anyone to imagine a millionth or a billionth of something, which few sane people can accomplish with ease, relating nanotechnology to atoms often makes the nanometre easier to imagine. While few non-scientists have a clear idea of how large an atom is, defining a nanometre as the size of 10 hydrogen, or 5 silicon atoms in a line is within the power of the human mind to grasp. The exact size of the atoms is less important than communicating the fact that nanotechnology is dealing with the smallest parts of matter that we can manipulate.

  1. Science fiction

While there is a commonly held belief that nanotechnology is a futuristic science with applications 25 years in the future and beyond, nanotechnology is anything but science fiction. In the last 15 years over a dozen Nobel prizes have been awarded in nanotechnology, from the development of the scanning probe microscope (SPM), to the discovery of fullerenes. According to CMP Científica, over 600 companies are currently active in nanotechnology, from small venture capital backed start-ups to some of the world's largest corporations such as IBM and Samsung. Governments and corporations worldwide have ploughed over $4 billion into nanotechnology in the last year alone. Almost every university in the world has a nanotechnology department, or will have at least applied for the funding for one.

Even more significantly, there are companies applying nanotechnology to a variety of products we can already buy, such as automobile parts, clothing and ski wax. Nanotechnology is already all around us if you know where to look.

The confusion arises in part because many people in the business world do not know where to look. Over the last decade, technology has become synonymous with computers, software and communications, whether the internet or mobile telephones. Many of the initial applications of nanotechnology are materials related, such as additives for plastics, nanocarbon particles for improved steels, coatings and improved catalysts for the petrochemical industry. All of these are technology based industries, maybe not new ones, but industries with multi-billion dollar markets.

  1. The nanotechnology industry

It is increasingly common to hear people referring to `the nanotechnology industry', just like the software or mobile phone industries, but will such a thing ever exist? Many of the companies working with nanotechnology are simply applying our knowledge of the nanoscale to existing industries, whether it is improved drug delivery mechanisms for the pharmaceutical industry, or producing nanoclay particles for the plastics industry. In fact nanotechnology is an enabling technology rather than an industry in its own right. No one would ever describe Microsoft or Oracle as being part of the electricity industry, even though without electricity the software industry could not exist. Rather, nanotechnology is a fundamental understanding of how nature works at the atomic scale. New industries will be generated as a result of this understanding, just as the understanding of how electrons can be moved in a conductor by applying a potential difference led to electric lighting, the telephone, computing, the internet and many other industries, all of which would not have been possible without it.

While it is possible to buy a packet of nanotechnology, a gram of nanotubes for example, it would have zero intrinsic value. The real value of the nanotubes would be in their application, whether within existing industry, or to enable the creation of a whole new one.

  1. Fantastic voyage

Shrinking machines down to the size where they can be inserted into the human body in order to detect and repair diseased cells is a popular idea of the benefits of nanotechnology, and one that even comes close to reality. Many companies are already in clinical trials for drug delivery mechanisms based on nanotechnology, but unfortunately none of them involve miniature submarines. It turns out that there are a whole range of more efficient ways that nanotechnology can enable better drug delivery without resorting to the use of nanomachines.

Just the concept of navigating ones way around the body at will does not bear serious scrutiny. Imagine attempting to go against the flow in an artery—it would be like swimming upstream in a fast flowing river, while boulders the size of houses, red and white blood cells, rained down on you. Current medical applications of nanotechnology are far more likely to involve improved delivery methods, such as pulmonary or epidermal methods to avoid having to pass through the stomach, encapsulation for both delivery and delayed release, and eventually the integration of detection with delivery, in order for drugs to be delivered exactly where they are needed, thus minimizing side effects on healthy tissue and cells. As far as navigation goes, delivery will be by exactly the same method that the human body uses, going with the flow and `dropping anchor' when the drug encounters its target.

  1. Shrinking stuff

Another common misconception is that nanotechnology is primarily concerned with making things smaller. This has been exacerbated by images of tiny bulls, and miniature guitars that can be strummed with the tip of an AFM, that while newsworthy, merely demonstrate our new found control of matter at the sub-micron scale. While almost the whole focus of micro-technologies has been on taking macro-scale devices such as transistors and mechanical systems and making them smaller, nanotechnology is more concerned with our ability to create from the bottom up. In electronics, there is a growing realization that with the end of the CMOS roadmap in sight at around 10 nm, combined with the uncertainly principal's limit of Von Neuman electronics at 2 nm, that merely making things smaller will not help us. Replacing CMOS transistors on a one for one basis with some type of nano device would have the effect of drastically increasing fabrication costs, while offering only a marginal improvement over current technologies.

However, nanotechnology offers us a way out of this technological and financial cul-de-sac by building devices from the bottom up. Techniques such as self assembly, perhaps assisted by templates created by nano imprint lithography, a notable European success, combined with our understanding of the workings of polymers and molecules such as Rotoxane at the nanoscale open up a whole new host of possibilities. Whether it is avoiding Moore's second law by switching to plastic electronics, or using molecular electronics, our understanding of the behaviour of materials on the scale of small molecules allows a variety of alternative approaches, to produce smarter, cheaper devices. The new understandings will also allow us to design new architectures, with the end result that functionality will become a more valid measure of performance than transistor density or operations per second.

  1. Nanotechnology is new

It often comes as a surprise to learn that the Romans and Chinese were using nanoparticles thousands of years ago. Similarly, every time you light a match, fullerenes are produced. Degusssa have been producing carbon black, the substance that makes car tyres black and improves the wear resistance of the rubber, since the 1920s. Of course they were not aware that they were using nanotechnology, and as they had no control over particle size, or even any knowledge of the nanoscale they were not using nanotechnology as currently defined.

What is new about nanotechnology is our ability to not only see, and manipulate matter on the nanoscale, but our understanding of atomic scale interactions.

  1. Building atom by atom

One of the defining moments in nanotechnology came in 1989 when Don Eigler used a SPM to spell out the letters IBM in xenon atoms. For the first time we could put atoms exactly where we wanted them, even if keeping them there at much above absolute zero proved to be a problem. While useful in aiding our understanding of the nanoworld, arranging atoms together one by one is unlikely to be of much use in industrial processes. Given that a Pentium 4 processor contains 42 million transistors, even simplifying the transistors to a cube of 100 atoms on each side would require 42 x 102 operations, and that is before we start to consider the other material and devices needed in a functioning processor.

Of course we already have the ability to build things atom by atom, and on a very large scale; it is called physical chemistry, and has been in industrial use for over a century producing everything from nitrates to salt. To do this, we do not need any kind of tabletop assembler as in Star Trek, usually a few barrels of readily available precursor chemicals and maybe a catalyst are all that is required.

Compare this with the difficulty of producing anything organic atom by atom, a sausage for example. Everyone is familiar with the macroscale ingredients of a sausage, some meat, maybe some fat, cartilage or other kinds of tissue, even some bone, all encased in animal gut. Never mind, argue the proponents of assemblers, things are simpler at smaller scales.

Zooming down to the microscale we still have far more complexity than we would like to attempt to replicate, with cells, cytoplasm, mitochondria, chromosomes, ribosomes and many other highly complex items of natural engineering. Moving closer to the nanoscale, we still have to deal with nucleic acids, nucleotides, peptides and proteins, none of which we fully understand, or expect to even have the computing power to understand in the near future.

In terms of return on our investment, a farmyard containing a few pigs is a far more effective sausage machine than we could ever design, and has several other by-products such as hams and a highly effective waste disposal system. This serves to illustrate just how far we are away from being able to replicate nature.

  1. Attack of the killer nanobots

In terms of capturing the public imagination, unleashing hordes of self-replicating devices that escape from the lab and attack anything in their path is always going to be popular. Unfortunately nature has already beaten us to it, by several hundred million years. Naturally occurring nanomachines, that can not only replicate and mutate as they do so in order to avoid our best attempts at eradication, but can also escape their hosts and travel with alarming ease through the atmosphere. No wonder that viruses are the most successful living organisms on the planet, with most of their `machinery' being well into the nano realm. However, there are finite limits to the spread of such `nanobots', usually determined by their ability, or lack thereof, of converting a sufficiently wide range of material needed for future expansion. Indeed, the immune systems of many species, while unable to completely neutralize viruses without side effects such as runny noses, are so effective in dealing with this type of threat as a result of the wide range of different technologies available to a large complex organism when confronted with a single purpose nano-sized one. For any threat from the nano world to become a danger, it would have to include far more intelligence and flexibility than we could possibly design into it.

Our understanding of genomics and proteomics is primitive compared with that of nature, and is likely to remain that way for the foreseeable future. For anyone determined to worry about nanoscale threats to humanity should consider mutations in viruses such as HIV that would allow transmission via mosquitoes, or deadlier versions of the influenza virus, which deserve far more concern than anything nanotechnology may produce.

  1. Conclusions

Nanotechnology, like any other branch of science, is primarily concerned with understanding how nature works. We have discussed how our efforts to produce devices and manipulate matter are still at a very primitive stage compared to nature. Nature has the ability to design highly energy efficient systems that operate precisely and without waste, fix only that which needs fixing, do only that which needs doing, and no more. We do not, although one day our understanding of nanoscale phenomena may allow us to replicate at least part of what nature accomplishes with ease.

While many branches of what now falls under the umbrella term nanotechnology are not new, it is the combination of existing technologies with our new found ability to observe and manipulate at the atomic scale that makes nanotechnology so compelling from scientific, business and political viewpoints.

For the scientist, advancing the sum total of human knowledge has long been the driving force behind discovery, from the gentleman scientists of the 17th and 18th centuries to our current academic infrastructure. Nanotechnology is at a very early stage in our attempts to understand the world around us, and will provide inspiration and drive for many generations of scientists.

For business, nanotechnology is no different from any other technology: it will be judged on its ability to make money. This may be in the lowering of production costs by, for example, the use of more efficient or more selective catalysts in the chemicals industry, by developing new products such as novel drug delivery mechanisms or stain resistant clothing, or the creation of entirely new markets, as the understanding of polymers did for the multi-billion euro plastics industry.

Politically, it can be argued that fear is the primary motivation. The US has opened up a commanding lead in terms of economic growth, despite recent setbacks, as a result if the growth and adoption of information technology. Of equal significance is the lead in military technology as demonstrated by the use of unmanned drones for both surveillance and assault in recent conflicts. Nanotechnology promises far more significant economic, military and cultural changes than those created by the internet, and with technology advancing so fast, and development and adoption cycles becoming shorter, playing catch-up will not be an option for governments who are not already taking action.

Maybe the greatest short term benefit of nanotechnology is in bringing together the disparate sciences, physical and biological, who due to the nature of education often have had no contact since high school. Rather than nanosubmarines or killer nanobots, the greatest legacy of nanotechnology may well prove to be the unification of scientific disciplines and the resultant ability of scientists, when faced with a problem, to call on the resources of the whole of science, not just of one discipline.

{endslide}

 

 

 

این مطلب تا چه اندازه برای شما مفید بود؟

1 1 1 1 1 1 1 1 1 1 میانگین امتیاز 0.00 (0 رای)